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Abstract. Visual features extracted from retinal fundus images have
been increasingly used for glaucoma detection, as those images are gen-
erally easy to acquire. In recent years, genetic researchers have found that
some single nucleic polymorphisms (SNPs) play important roles in the
manifestation of glaucoma and also show superiority over fundus images
for glaucoma detection. In this work, we propose to use the SNPs to form
the so-called privileged information and deal with a practical problem
where both fundus images and privileged genetic information exist for
the training subjects, while the test objects only have fundus images. To
solve this problem, we present an effective approach based on the learn-
ing using privileged information (LUPI) paradigm to train a predictive
model for the image visual features. Extensive experiments demonstrate
the usefulness of our approach in incorporating genetic information for
fundus image based glaucoma detection.

1 Introduction

Glaucoma, one of the leading causes of blindness worldwide, is a chronic and
irreversible neurodegenerative disease. It usually results in deterioration of vi-
sion, due to the progressive damage of the optic nerve in a patient. It is reported
that, by estimation, up to 80 million people will contract glaucoma by the year
of 2020 [7]. Researchers have proposed various methods to facilitate a fully au-
tomatical process in order to make fast and accurate glaucoma detection in the
early stage. By this means, glaucoma patients will have chance to appoint an
early time for clinical treatment and thus prevent it from going any worse.

Nowadays, the fast development of clinical hardware technology makes it gen-
erally easy and economical to take images of patients’ retinal fundus. Because
of such convenient acquisition, fundus image based glaucoma detection has at-
tracted increasing attention from researchers. Till now, many works have been
proposed by using fundus images [1–3, 13]. However, the performance is still not
very satisfactory yet, because the important depth information, which is used to
determine the optic nerves head structure (i.e., cupping) in anatomy, is missing



2

Fig. 1. Flowchart of our proposed approach for fundus image based glaucoma detection.

in the 2D fundus images. Moreover, the quality of fundus images is sometimes
heavily affected by imaging device configurations, which prevents people from
extracting discriminative visual features from the fundus images.

To help improve performance, other people are looking for other data modal-
ities. Recently, the studies on certain diseases have found that some single nu-
cleotide polymorphisms (SNPs) from genes have high associations with the de-
velopment of glaucoma [12]. Based on this study, a more recent work [6] shows
that a support vector machine (SVM) classifier trained by using SNPs as ge-
netic features outperforms the SVM classifier trained by using visual features
extracted from fundus images. This interesting result motivates us to addition-
ally consider incorporating the genetic information (i.e., SNPs) for fundus image
based glaucoma detection. However, as it is generally much easier to acquire
fundus images than SNPs, especially in underdeveloped districts, we may face
with the problem that only fundus images for newly coming subjects (i.e., test
subjects) can be obtained. In spite of that, we can leverage SNPs of existing
subjects (i.e., training subjects) to help train a better predictive model.

In this work, we propose to solve a practical problem where a training sub-
ject has both genetic data and fundus image, while a test subject only has one
fundus image. We note that our problem is different from multi-modality fusion
problems [5, 6] in which both the training and test subjects must have the same
data modalities. And the trained model cannot make prediction on any test
subject, unless all of its data modalities are provided. To train one model for
each modality, multi-view learning methods have been proposed. As a special
case, existing two-view learning methods [4, 9] can be applied to our problem to
train two models for genetic data and fundus image data, respectively, and only
the model for image data will be used for testing. However, existing two-view
learning methods usually assume there is a strong correspondence between the
two views of data. Otherwise, the trained models will generally not perform well.
Considering that the genetic view is totally different from the image view and
the genetic view is much better than the image view [6], it is likely that the
two-view learning methods may not achieve good performance in our problem.
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Unlike the two-view learning methods [4, 9], in this work we propose a novel
approach by first extracting the so-called privileged genetic information from the
genetic data. And such privileged information is then used to model the slack
variable in the hinge loss for the training subjects based on visual features in a
max-margin formulation, under the learning using privileged information (LUPI)
paradigm [11]. After training the predictive model for fundus images, we use it
to make prediction on a given test subject by using its visual feature. Fig. 1
illustrates our overall approach. We extensively evaluate our approach on the
Singapore Malay Eye Study (SiMES) database and demonstrate its effectiveness
in incorporating the privileged genetic information.

2 Learning Using Privileged Genetic Information

In this section, we first introduce how we extract the privileged information from
genetic data and then develop a max-margin method to minimize the averaged
empirical error on the training subjects. Before we start, let us define some
notations to be used in this paper. the operator > represents the transpose of a
vector or matrix. 0 (resp., 1) denotes a column vector of all zeros (resp., ones).
And also, α = [α1, . . . , αn]> ≥ 0 means αi ≥ 0,∀i = 0, . . . , n.

2.1 Privileged genetic information

In the literature of glaucoma detection, Liu et al. [6] has shown that the genetic
data, consisting of SNPs, greatly outperforms the visual features extracted from
retinal fundus images, which seems to be a good alternative to detect glaucoma,
compared to using fundus images. However, in underdeveloped districts, it is
impractical yet to perform genotyping for test subjects, while acquiring their
fundus images is still feasible. Although the test subjects lack the genetic data,
we can leverage already existing sources with additional genetic data. Specifically
in this work, we propose to use the genetic data of the training subjects as
important prior information to help train a good predictive model, together with
the commonly used visual features extracted from retinal images. The intuition
is two-fold: i) Genetic data are better than image data [6]; and ii) genetic data are
totally different from image data, which can bring complementary discriminative
knowledge for the model training.

As indicated in [11], using outputs of some pre-learned SVM classifier as
privileged information show better performance than using original data fea-
tures. Motivated by this, we propose to extract the privileged information from
the genetic data through SVM. Specifically, we first use a set of genetic data
{(zi, yi)|ni=1} with each from the i-th training subject. Also, we assume that there
are n+ positive and n− negative training subjects. So we have n = n+ +n−. The
genetic data are used to train an SVM classifier using the following max-margin
formulation by minimizing the averaged empirical loss:

min
w,b,ξi

1

2
‖w‖2 + C

 1

n+

∑
i: yi=1

ξi +
1

n−

∑
i: yi=−1

ξi

 , (1)
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s.t. yi(w
>ϕ(zi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n. (2)

where w is the weight variable, b is the bias variable, and ξi is the slack variable;
ϕ(·) is a pre-defined feature mapping function, and C > 0 is a tradeoff parameter.
After solving (1) by using some existing toolbox such as LIBSVM, we can obtain
the optimal solution of w and b, which are then used to compute the following
residual value for each training subject i using the deviation function as below:

ri = 1− yi(w>ϕ(zi) + b). (3)

Intuitively, the residual value ri reflects the difficulty of classifying the i-th
training subject. When the SVM classifier makes an error on zi, ri becomes larger
than 1, and vice versa. Although original genetic features could also be used as
privileged information, using the residual value ri usually achieves better results
as shown in [11] and is also much simpler, i.e., it only introduces two scalar
variables, which will be shown in (4).

2.2 Privileged learning: A max-margin formulation

Vapnik and Vashist [11] recently proposed a new learning paradigm called learn-
ing using privileged information (LUPI) for SVM type of algorithms, which
aims at improving predictive performance and reducing the number of required
training samples. In the LUPI paradigm, the privileged information (i.e., prior
knowledge) comes in the form of privileged data features which are available at
the training time, but not at the testing time.

In this work, the residual value ri in (3) is used as the privileged feature
and the image visual feature xi as the original feature for each training subject.
Based on the LUPI paradigm, we propose to minimize the averaged empirical
error on the positive and negative training subjects to avoid imbalanced prob-
lems (consider that we always have much more normal people than glaucoma
patients). And unlike the standard SVM in (1) which directly optimizes for the
slack variables ξi, the LUPI paradigm models each slack variable as a function
of the privileged information. Specifically, we define each slack variable as the
following linear function with respect to ri in this work:

ξi(u, e) = u · ri + e, (4)

where u is a linear weight and e is a bias term. With the above definitions, we
replace the slack variable in SVM with (4) and propose the following optimiza-
tion problem under the max-margin framework to learn a binary classifier for
glaucoma detection, with the decision function as f(x) = w>φ(x) + b:

min
w,b,u,e

1

2

(
‖w‖2 + λ · u2

)
+ C

 1

n+

∑
i: yi=1

ξi(u, e) +
1

n−

∑
i: yi=−1

ξi(u, e)

 , (5)

s.t. yi(w
>φ(xi) + b) ≥ 1− ξi (u, e) , ξi (u, e) ≥ 0, i = 1, . . . , n.
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where φ(·) is a feature mapping function to map each xi into a higher dimensional
space, λ > 0 is a pre-defined parameter to control the magnitude of u, C > 0 is
also pre-defined to balance the averaged empirical loss and the regularizations
of the weight variables. The optimization problem in (5) is often solved in its
dual alternative. So here, we first introduce dual variables αi and βi for all the
constraints in (5). Then its Lagrangian can be obtained as:

L(w, b, u, e) =
1

2

(
‖w‖2+λ‖u‖2

)
+C

 1

n+

∑
i: yi=1

ξi(u, e)+
1

n−

∑
i: yi=−1

ξi(u, e)


−

n∑
i=1

αi
[
yi(w

>φ(xi)+b)−1+ξi (u, e)
]
−

n∑
i=1

βi · ξi (u, e) .

By setting the derivatives of the above Lagrangian to zeros with respect to
w, b, u, e and then substituting the subsequent derivative results back into (5),
we arrive at the dual problem of (5) as follows:

min
α,β

−1>α +
1

2
(α◦y)>K(α◦y) +

1

2λ
(α+β−C · d)>K̃(α+β−C · d), (6)

s.t. y>α = 0, 1>(α + β − C · d) = 0, α ≥ 0, β ≥ 0,

where α = [α1, . . . , αn]> and β = [β1, . . . , βn]> are vectors of the dual variables,
y = [y1, . . . , yn]> is the label vector, and d = [d1, . . . , dn]> is a vector with
di = 1

n+
(if yi = 1) or 1

n−
(if yi = −1); K and K̃ are both kernel matrices with

each element as Kij = φ(xi)
>φ(xj) and K̃ij = ri · rj , respectively. Note that

(6) is a standard quadratic programming problem, and it can thus be efficiently
solved by existing software such as MOSEK1 for MATLAB. After obtaining the
optimal α and β in (6), we can get the optimal w =

∑n
i=1 αiyiφ(xi). Therefore,

the decision function of SVM+ can be rewritten as f(x) =
∑n
i=1 αiyiK(xi,x)+b,

which will be used to make prediction for any test subject x.

3 Experiments

We compare SVM+ with the standard SVM and two existing two-view learning
methods, i.e., kernel canonical correlation analysis (KCCA) [9] and SVM-2K [4].
For the standard SVM, we train its model by using the genetic features only for
both the training and test subjects. For the two-view learning emthods KCCA
and SVM-2K, because the training subjects in our work have two views (i.e.,
image and genetic features), each method can be applied to train two models
respectively for both views2. Note that the test subjects do not have genetic

1 http://www.mosek.com/
2 Note that KCCA first finds a common space where the correlation between the two

views is maximized. After obtaining the projected features in the common space for
both views, we apply SVM to train one model for each view.
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features available in this work, so we can only use the model learned for image
features to make prediction on any test subject. Besides those machine learning
methods, we also compare with intraocular pressure (IOP) which is a glaucoma
assessment method currently being used in clinics.

3.1 Database setup and feature description

The Singapore Malay Eye Study (SiMES) database is used for experimental e-
valuations of different methods. As a population-based study conducted by Sin-
gapore Malay community [10] from 2004 to 2007, SiMES records the assessments
on the causes and risk factors of blindness and visual impairment for randomly
selected Malays aged from 40 to 80 years old living in Singapore. It contains
2258 subjects with complete genetic data and retinal fundus image data for each
subject. In the experiments, the diagnostic results of glaucoma are available for
all the subjects and are thus used as the class label (i.e., +1 for glaucoma and -1
for normal). And in SiMES, 100 subjects are found to have glaucoma. Since IOP
is clinically used for glaucoma detection, it is then removed from the personal
profile data. In the experiments, we equally partition the database into training
and testing sets. More specifically, we randomly select half of the glaucoma (i.e.,
positive) and normal (i.e., negative) subjects to form the training data, and the
remaining subjects are used for testing. We assume the training subjects have
both genetic and image data, while the test subjects only have image data. We
believe this is a practical setting as in the real world. Also note that we form
the training and test sets by conducting the random partitioning for ten times,
therefore we have ten independent rounds of experiments.

We follow [6] to represent each retinal image as a 569-dimensional feature
vector which is obtained from the standard deviations of color and texture de-
scriptors extracted from image grids (please refer to [6] for more details). And
for the genetic data, the recent study [12] has identified 178 single nucleotide
polymorphisms (SNPs) which have high associations with glaucoma. Therefore,
we use these SNPs as genetic features in the experiments.

3.2 Experimental configuration

For all the machine learning methods, we use the nonlinear RBF kernel, i.e.,
k(xi,xj) = exp(−γ‖xi − xj‖2), where we set the kernel parameter γ = 1

A
and A is the mean value of all the square pairwise distances between any t-
wo training subjects. For SVM, KCCA and SVM-2K, five-fold cross-validation
is performed to automatically select the tradeoff parameter C from the set
S = {10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104} during the training phase. And
for our SVM+, as we have an additional parameter λ in (5), we perform the grid
search to automatically select C and λ, both from S. After cross-validation, the
final classifier of each method is obtained by training this method again by using
all the training data together with the selected parameters found through cross-
validation. And this final classifier is used to make prediction on test subjects.
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Table 1. Means and standard deviations of both AUC and balanced accuracy P̄ of
different methods. The best results are highlighted in boldface.

IOP SVM KCCA SVM-2K SVM+

AUC 0.577±0.034 0.731±0.030 0.745±0.035 0.748±0.019 0.772±0.012

P̄ 0.555±0.021 0.625±0.017 0.647±0.029 0.633±0.013 0.669±0.018

Following [6], we use balanced accuracy P̄ and the area under the receiver
operating characteristic (ROC) curve, referred to as AUC, as evaluation metrics
in this work, where the ROC is plotted as a curve which shows the tradeoff
between sensitivity P+ and specificity P−. At the screening setpoint, we maintain
a baseline specificity P− of 85% to limit the rate of false negatives, and determine
the corresponding balanced accuracy P̄ of the various methods.

3.3 Performance analysis

Table 1 shows the means and standard deviations of both AUC and balanced
accuracy P̄ for all the methods. We have the following observations:
i) All the machine learning methods, including SVM, KCCA, SVM-2K and our
SVM+, perform much better than the clinically-used IOP method, showing that
machine learning methods are effective and have great potentials for clinical use.
ii) KCCA, SVM-2K and our SVM+ have better performance than SVM in terms
of both AUC and P̄ . This observation clearly demonstrate that both the two-
view learning methods and the privileged learning methods can train better
predictive models by using features from two different views, when compared to
learning from a single view.
iii) Two-view learning methods KCCA and SVM-2K perform considerably worse
than SVM+. The explanation is that in order to achieve good performance,
the two-view learning methods generally require that each single view of data
should perform comparably good to each other. However, in our experiments,
the genetic features are much better than the image visual features3. Therefore,
due to the considerably large difference between the two features, they may not
highly correlate with each other in KCCA, or their single classifiers cannot make
close predictions on each training subject in SVM-2K. As a result, KCCA and
SVM-2K cannot achieve good performance. In contrast, our SVM+ considers the
genetic information as prior knowledge and does not have any strong assumption
made on the correspondence between the genetic and visual features.
iv) Our SVM+ achieves the best performance over the other baselines, which
demonstrates that SVM+ is effective in leveraging privileged genetic information
to learn a better predictive model for fundus image based glaucoma detection.
When compared with the second best mean results, SVM+ achieves relative
improvements of 3.21% in AUC over SVM-2K and 3.40% in P̄ over KCCA.

3 As reported in Table 3 in [6], genetic features enjoy a large improvement of 0.088
AUC over image visual features on the SiMES dataset.
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4 Conclusion

We have developed an effective approach based on the LUPI paradigm for fundus
image based glaucoma detection, which leverages privileged genetic information
during the model training phase. The privileged genetic information of training
subjects is obtained by first training an SVM classifier using genetic features and
then computing the residual values from the SVM classifier predictions. We have
conducted extensive experiments on the SiMES database, where results show the
superiority of our method over SVM and other two-view learning methods.
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